Step of Proof: decidable__equal_bool
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
decidable
equal
bool
:
(tt = tt)
(
(tt = tt))
latex
by ((Sel 1 (D 0))
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
bool
wf
,
not
wf
,
btrue
wf
origin